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Abstract
It is shown that, with a few exceptions, the simple restricted mod-

ules for a restricted contact Lie algebra are induced from those for the
homogeneous component of degree zero.

In [3], Shen constructed the simple restricted modules for the restricted
Witt, special and hamiltonian Lie algebras which comprise three of the four
classes of restricted Lie algebras of Cartan type. His methods, however, do
not apply to the algebras in the fourth class, namely, the contact algebras.

Here, this remaining case is considered and it is shown that, with a few
exceptions, the simple restricted modules are induced from simple restricted
modules (extended trivially to positive components) for the homogeneous
component of degree zero in the usual grading of the algebra. As this com-
ponent is isomorphic to the direct sum of a symplectic algebra and the trivial
algebra, the problem of determining, say, the dimensions of the simple re-
stricted modules is then reduced to the classical situation for which Lusztig
has a conjecture (see [3], p. 294).

The author would like to thank Dan Nakano for introducing him to Lie
algebras of Cartan type and for the infectious enthusiasm with which he
discusses their properties.

1 Notation and Statement of Main Theorem

The notation will be, for the most part, the same as that in [4] and this
reference can also be consulted for the precise definition and fundamental
properties of the contact Lie algebras.

Let F be an algebraically closed field of characteristic p > 2 and let n =
2r+ 1 with r ∈ N. For 1 ≤ k ≤ n let εk be the n-tuple with jth component
δjk (Kronecker delta). Set A = {a =

∑
k akεk | 0 ≤ ak < p} ⊂ Zn.
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The underlying vector space of the restricted contact Lie algebra K
(denoted K(2r + 1, 1) in [4]) has as basis {x(a) | a ∈ A} if n + 3 6≡ 0
(mod p) and {x(a) | a ∈ A, a 6=

∑
(p − 1)εk} otherwise. (The x(a) are

standard basis vectors for a divided power algebra.)
For 1 ≤ k ≤ 2r, set

σ(k) =

{
1, 1 ≤ k ≤ r
−1, r < k ≤ 2r

and k′ = k + σ(k)r. Also, for a ∈ A, set |a| =
∑
ak and ‖a‖ = |a|+ an − 2.

With 〈x, y〉 denoting the Lie product of x, y ∈ K, the following relations
hold. (By convention, x(a) = 0 if a /∈ A.)

Theorem 1.1. 1. 〈x(0), x(a)〉 = 2x(a−εn).

2. 〈x(εk), x(a)〉 = σ(k)x(a−εk′ ) + (ak + 1)x(a+εk−εn), 1 ≤ k ≤ 2r.

3. 〈x(εn), x(a)〉 = ‖a‖x(a).

4. 〈x(εk+εk′ ), x(a)〉 = σ(k)(ak′ − ak)x(a), 1 ≤ k ≤ 2r.

K acquires the structure of a graded Lie algebra if one defines the ith
homogeneous component by Ki = {x(a) | ‖a‖ = i}.

Denote the restricted universal enveloping algebra (u-algebra) of an ar-
bitrary restricted Lie algebra L by u(L). The category of (unitary) u(L)-
modules and that of restricted L-modules are equivalent so, for our purposes,
it suffices to work in the former category.

Let Λ = {λ =
∑r

i=1 λiεi + λnεn | λi, λn ∈ Fp} the elements of which
are called weights. For a u(K0)-module V and λ ∈ Λ define Vλ = {v ∈
V | x(εi+εi′ )v = λiv (1 ≤ i ≤ r) and x(εn)v = λnv}. A nonzero vector
m ∈ Vλ is a maximal vector (of weight λ) if x(εi+εj)m = 0 for all (i, j) ∈
I := {(i, j) | 1 ≤ i, j ≤ r or 1 ≤ i ≤ r, i′ < j ≤ 2r}.

For each λ ∈ Λ there exists a simple u(K0)-module S(λ) possessing
a unique (up to scalar multiples) maximal vector of weight λ. Moreover,
{S(λ) | λ ∈ Λ} is a complete set of representatives for the isomorphism
classes of simple u(K0)-modules. In fact, K0 is the direct sum of its ideals∑

1≤i,j,≤2r Fx
(εi+εj) ∼= sp(2r) and Fx(εn) ∼= F and it is easy to see that S(λ)

is a simple u(sp(2r))-module on which x(εn) acts as multiplication by λn, so
classical theory applies.

Set N+ =
∑

i>0Ki. Then N+ / N+ + K0 =: K+ and K+/N+ ∼= K0.
In particular, any K0-module becomes a K+-module in the natural way. It
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follows from [1] that if S is a simple u(K0)-module, then the u(K)-module
M(S) := u(K) ⊗u(K+) S has a unique simple quotient and that this sets
up a one-to-one correspondence between the simple u(K0)-modules and the
simple u(K)-modules.

For 1 ≤ k ≤ r + 1 set ζk = −
∑r−k+1

i=1 εi (the empty sum being zero).
A weight λ ∈ Λ is exceptional if λ = ζk + (±k − r − 1)εn for some k
(1 ≤ k ≤ r + 1). The main result of the paper is as follows.

Theorem 1.2. If λ ∈ Λ is not exceptional, then M(S(λ)) is simple.

The proof of this theorem is given in section 3. The converse has been
checked by the author in the case n = 3 and it is conjectured to hold
in general. Indeed, similar “exceptional” weights (i.e., ones for which the
corresponding induced module is not simple) arose in Shen’s findings for
the other three classes of algebras, although there they turned out to be
fundamental dominant weights because of a difference of indexing.

2 Lemmas

In this section, formulas will be obtained for use in the proof of 1.2.
Set

Tk =

{
x(εk), 1 ≤ k < n

x(0), k = n,

and for β = (βk) ∈ Zn define T β =
∏n
k=1 T

βk
k ∈ u(K) where T ik := 0 if i < 0.

It is a consequence of the p-mapping defined on K that T ik = 0 if i ≥ p, so
that T β = 0 if and only if β /∈ A.

Lemma 2.1. In each of the following situations, TkT β = T βTk.

1. k = n.

2. k < n and βk′ = 0.

3. βn = p− 1.

Proof. Parts (1) and (2) are immediate from 1.1(1) and (2). Part (3) follows
from part (1) and 1.1(2).

In the following lemmas, fix λ ∈ Λ and let m denote a maximal vector
in S(λ). For any β ∈ A, we have T β ⊗m ∈ u(K)⊗u(K+) S(λ) = M(S(λ)).

Lemma 2.2. If ai, aj ≥ 1 and βi′ = 0 = βj′ for some (i, j) ∈ I, then
x(a)T β ⊗m = 0.
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Proof. If |β| = 0, then x(a)T β ⊗m = 1 ⊗ x(a)m = 0, since m is a maximal
vector. Now suppose |β| > 0 and let k be the least index for which βk 6= 0.
If k = n, then by 1.1,

x(a)T β ⊗m = Tnx
(a)T β−εn ⊗m− 2x(a−εn)T β−εn ⊗m

which equals zero by the induction hypothesis. If k < n, then

x(a)T β ⊗m = Tkx
(a)T β−εk ⊗m− σ(k)x(a−εk′ )T β−εk ⊗m
− (ak + 1)x(a+εk−εn)T β−εk ⊗m.

If k′ ∈ {i, j}, then T β−εk = 0 and the result follows. Otherwise, the induc-
tion hypothesis applies to each of the three terms also giving the result.

Below,
(
i
j

)
denotes the binomial coefficient with the convention that(

i
j

)
= 0 if either i < j or j < 0.

Lemma 2.3. x(εk+ωεn)Tµn ⊗m = (−2)ω
(
µ
ω

)
TkT

µ−ω
n ⊗m for any k < n and

µ, ω ∈ Z.

Proof. If µ ≤ 0, then both sides equal zero unless µ = 0 = ω in which case
both sides equal Tk ⊗m. If µ > 0, then by 1.1,

x(εk+ωεn)Tµn ⊗m = Tnx
(εk+ωεn)Tµ−1

n ⊗m− 2x(εk+(ω−1)εn)Tµ−1
n ⊗m

and the induction hypothesis applies to both terms on the right to give the
result.

Lemma 2.4. If βj = 0 for all r < j < n, then for each ω ∈ Z,

x(ωεn)T β⊗m =
[
(−2)ω−1

(
βn
ω − 1

)
(λn−

∑
1≤i≤r

βi)+(−2)ω
(
βn
ω

)]
T β−(ω−1)εn⊗m.

Proof. If |β| = 0, then both sides equal zero if ω < 0 or if ω > 1 while both
sides equal Tn ⊗m if ω = 0 and both sides equal λn · 1 ⊗m if ω = 1. Now
assume |β| > 0 and let k be the least index for which βk 6= 0. If k = n, then
the result follows from the induction hypothesis as in the proof of 2.2. If
k < n (so that, in fact, k ≤ r), then

x(ωεn)T β ⊗m = Tkx
(ωεn)T β−εk ⊗m− x(εk+(ω−1)εn)T β−εk ⊗m.
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But

x(εk+(ω−1)εn)T β−εk ⊗m = T β−εk−βnεnx(εk+(ω−1)εn)T βn
n ⊗m

= (−2)ω−1

(
βn
ω − 1

)
T β−(ω−1)εn ⊗m,

where the first equality is from 1.1 and 2.2 and the second equality is
from 2.3. The result now follows from the induction hypothesis.

Lemma 2.5. x(εn)T β ⊗m = (λn −
∑

k<n βk − 2βn)T β ⊗m.

Proof. Use induction on |β| as in the proof of 2.2.

Lemma 2.6. For 1 ≤ i ≤ r, x(εi+εi′ )T β ⊗m = (βi′ − βi + λi)T β ⊗m.

Proof. Use induction on |β| as in the proof of 2.2.

Lemma 2.7. If 1 ≤ i ≤ r and βk = 0 for all r < k < n, then

x(εi+εi′+εn)T β ⊗m = 2βn(βi − λi)T β−εn ⊗m.

Proof. If |β| = 0, then both sides equal zero, so suppose |β| > 0 and let k be
the least index for which βk 6= 0. If k = n, the result follows easily from 1.1,
2.6 and the induction hypothesis. If k < n (so that, in fact, k ≤ r), then by
1.1,

x(εi+εi′+εn)T β ⊗m = Tkx
(εi+εi′+εn)T β−εk ⊗m− δikx(εi+εn)T β−εk ⊗m
− (δik + 1)x(εi+εi′+εk)T β−εk ⊗m.

Now by 1.1 and 2.2,

x(εi+εn)T β−εk ⊗m = T β−εk−βnεnx(εi+εn)T βn
n ⊗m,

while
x(εi+εi′+εk)T β−εk ⊗m = 0.

Hence, the induction hypothesis and 2.3 together give the result.

Lemma 2.8. If 1 ≤ i, k ≤ r, βk = p−1 and βk′ = 0, then x(εi+εk)T β⊗m = 0.

Proof. If βi′ = 0, then the assertion follows from 2.2. Assume βi′ > 0 (so
that, in particular, i 6= k). By 1.1,

x(εi+εk)T β ⊗m = T β−βkεk−βi′εi′x(εi+εk)T
βi′
i′ T βk

k ⊗m.
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Now

x(εi+εk)T
βi′
i′ T βk

k ⊗m = Ti′x
(εi+εk)T

βi′−1
i′ T βk

k ⊗m+ x(εk)T
βi′−1
i′ T βk

k ⊗m.

The first term on the right equals zero by the induction hypothesis and that
the second term equals zero is a consequence of 2.1 and the assumption
βk = p− 1.

Lemma 2.9. If r < j < n and βk =


p− 1, 1 ≤ k ≤ r
0, r < k < j

p− 1, j < k ≤ n,
then

x(εj′+εn)T β ⊗m = βj(λn − λj′ − βj − j + 3r + 2)T β−εj ⊗m.

Proof. If βj = 0, then 1.1, 2.8 and 2.2 imply

x(εj′+εn)T β ⊗m = T β−βnεnx(εj′+εn)T βn
n ⊗m.

But by 2.3,
x(εj′+εn)T βn

n ⊗m = 2Tj′T βn−1
n ⊗m,

so x(εj′+εn)T β ⊗m = 0 using 2.1 and the assumption βj′ = p− 1.
If βj > 0, then 1.1 and 2.1(3) give

x(εj′+εn)T β ⊗m = Tjx
(εj′+εn)T β−εj ⊗m+ x(εn)T β−εj ⊗m

− x(εj′+εj)T β−εj ⊗m.

Applying the induction hypothesis to the first term, 2.5 to the second term
and 2.6 to the third term yields the desired formula.

Lemma 2.10. If 1 ≤ i ≤ r and βk =


p− 1, 1 ≤ k < i

0, i < k < n

1, k = n,

then

x(εi′+2εn)T β ⊗m = 2βi(λn + λi − βi + i)T β−εi−εn ⊗m.

Proof. This can be proved by induction on βi and the proof is similar to
that of 2.9. (Here, 2.4 and 2.7 are required for the case βi > 0.)
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Lemma 2.11. Let 1 ≤ i ≤ r, r < j < n and µ, ω ∈ Z. Then for any
v ∈ S(λ),

x(µεj′+ωεi′ )T β ⊗ v = (−1)ω
(
βi
ω

)(
βj

µ− 2

)
T β−ωεi−(µ−2)εj ⊗ x(2εj′ )v

+ (−1)ω−1

(
βi

ω − 1

)(
βj

µ− 1

)
T β−(ω−1)εi−(µ−1)εj ⊗ x(εj′+εi′ )v

+ (−1)ω−2

(
βi

ω − 2

)(
βj
µ

)
T β−(ω−2)εi−µεj ⊗ x(2εi′ )v

+ (−1)ω
(
βi
ω

)(
βj

µ− 1

)
T β−ωεi−(µ−1)εjTj′ ⊗ v

+ (−1)ω−1

(
βi

ω − 1

)(
βj
µ

)
T β−(ω−1)εi−µεjTi′ ⊗ v

+ (−1)ω
(
βi
ω

)(
βj
µ

)
T β−ωεi−µεj+εn ⊗ v.

Proof. First assume βi = 0 = βj . Setting a = µεj′ + ωεi′ it follows from 2.1
that x(a)T β ⊗ v = T βx(a) ⊗ v. Therefore, if ‖a‖ > 0, then both sides of the
formula are equal to zero. This leaves the cases −2 ≤ ‖a‖ ≤ 0 which are
each routinely verified.

Now assume βi = 0 and βj > 0. Then

x(a)T β ⊗ v = T β−βjεjx(a)T
βj

j ⊗ v

and by 1.1,

x(a)T
βj

j ⊗ v = Tjx
(a)T

βj−1
j ⊗ v + x(a−εj′ )T

βj−1
j ⊗ v.

The induction hypothesis applies to these final two terms and the result
follows.

Finally, if βi > 0, then

x(a)T β ⊗ v = Tix
(a)T β−εi ⊗ v − x(a−εi′ )T β−εi ⊗ v

and once again the formula is obtained by using the induction hypothesis.

Lemma 2.12. Assume βk = p − 1 for all 1 ≤ k ≤ r and for k = n. Set
M = u(K)T β ⊗m and let r < j < n.

In the following situations, T β−εj ⊗m ∈M.
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1. λj′ 6= 0 and βj = p− 1.

2. λj′ = 0 and βj 6= p− 1.

3. λj′ = −1 and βj 6= 1.

4. There exists j′ < i ≤ r such that λi 6= 0 and βi′ = p− 1.

5. There exists 1 ≤ i < j′ such that λi 6= −1 and βi′ = 0.

In addition, the following statements hold.

6 If λj′ 6= −1 and βj = p− 2, then T β−βjεj ⊗m ∈M.

7 Assume βk =

{
0, r < k < j

p− 1, j ≤ k < n.
If λj′ = 0 and λn 6= j − 3r − 3 or

if λj′ = −1 and λn 6= j − 3r − 2, then T β−βjεj ⊗m ∈M.

Proof. (1–3) By 2.11,

x(2εj′+εj)T β ⊗m = (βj/2)(2λj′ + βj + 1)T β−εj ⊗m.

(Note that the first term on the right hand side in 2.11 is zero since m is
maximal, the third term is zero since the first binomial coefficient is zero,
the last term is zero since βn = p−1, and the fourth and fifth terms simplify
using 2.1(3).)

(4) By part (1), T β−εi′ ⊗ m ∈ M, and by 2.11, x(εj′+εi′ )T β−εi′ ⊗ m =
βjT

β−εj ⊗m.
(5) By 2.11,

x(2εi+εi′ )x(εj′+εi′ )T β ⊗m = x(2εi+εi′ )(T β ⊗ x(εj′+εi′ )m+ βjT
β+εi′−εj ⊗m)

= βj(λi + 1)T β−εj ⊗m.

(6) By 2.11, x((p−1)εj′+εj)T β ⊗m = (λj′ + 1)T β−(p−2)εj ⊗m.
(7) First assume λj′ = 0 and λn 6= j − 3r − 3. By 2.9,

x(εj′+εn)T β ⊗m = (j − 3r − 3− λn)T β−εj ⊗m,

so T β−εj ⊗m ∈M. By part (2), T β−βjεj ⊗m ∈M.
Now assume λj′ = −1 and λn 6= j−3r−2. By part (3) it may be assumed

that βj = 1. By 2.9,

x(εj′+εn)T β ⊗m = (λn − j + 3r + 2)T β−εj ⊗m,

and the proof is complete.
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Lemma 2.13. Assume βk = 0 for all r < k < n. Set M = u(K)T β ⊗m
and let 1 ≤ i ≤ r.

In the following situations, T β−εi ⊗m ∈M.

1. λi 6= −1 and βi = p− 1.

2. λi = −1 and βi 6= p− 1.

3. λi = 0 and βi 6= 1.

4. There exists r < j < i′ such that λj′ 6= −1 and βj′ = p− 1.

5. There exists i′ < j < n such that λj′ 6= 0 and βj′ = 0.

In addition, the following statements hold.

6 If λi 6= 0 and βi = p− 2, then T β−βiεi ⊗m ∈M.

7 Assume βk =


p− 1, 1 ≤ k ≤ i
0, i < k ≤ r
1, k = n.

If λi = −1 and λn 6= −i or if λi = 0

and λn 6= 1− i, then T β−βiεi−εn ⊗m ∈M.

Proof. (1–3) By 2.11,

x(εi+2εi′ )T β ⊗m = (βi/2)(βi − 2λi − 1)T β−εi ⊗m.

(4) By part (1), T β−εj′ ⊗ m ∈ M and by 2.11, x(εj′+εi′ )T β−εj′ ⊗ m =
−βiT β−εi ⊗m.

(5) By 2.11,

x(εj′+2εj)x(εj′+εi′ )T β ⊗m = x(εj′+2εj)(T β ⊗ x(εj′+εi′ )m− βiT β+εj′−εi ⊗m)

= βiλj′T
β−εi ⊗m.

(6) By 2.11, x(εi+(p−1)εi′ )T β ⊗m = −λiT β−(p−2)εi ⊗m.
(7) First assume λi = −1 and λn 6= −i. By 2.10,

x(εi′+2εn)T β ⊗m = −2(λn + i)T β−εi−εn ⊗m,

so T β−εi−εn ⊗m ∈M. By part (2), T β−βiεi−εn ⊗m ∈M.
Now assume λi = 0 and λn 6= 1− i. By part (3) it may be assumed that

βi = 1. By 2.10,

x(εi′+2εn)T β ⊗m = 2(λn − 1 + i)T β−εi−εn ⊗m

and the proof is complete.
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Lemma 2.14. Assume βk =


p− 1, 1 ≤ k ≤ r
0, r < k < n

p− 1, k = n.

If λ is not exceptional,

then T β−(p−2)εn ⊗m ∈M := u(K)T β ⊗m.

Proof. By 2.4,

x((p−1)εn)T β ⊗m = 2p−2(λn + r + 2)T β−(p−2)εn ⊗m,

so if λn 6= −r−2, the result follows. Assume λn = −r−2. Then
∑

i 6=n λiεi 6=
ζ1 since λ is not exceptional. Therefore, either part (1) or part (4) of 2.13
applies to give T β−εr ⊗m ∈M. Again, by 2.4,

x(εr)x((p−1)εn)T β−εr ⊗m = 2p−2T β−(p−2)εn ⊗m,

so the proof is complete.

3 Proof of Theorem

The results of the previous section can now be assembled to prove the the-
orem.

Proof. (Proof of 1.2) Let N be a nonzero submodule of M(S(λ)) and let
0 6= v ∈ N. Write

v =
∑
β∈A

c(β)T β ⊗ sβ

with c(β) ∈ F and sβ ∈ S(λ). Order A by setting β < β′ if for some
k (1 ≤ k ≤ n) βi = β′i for all i > k and βk < β′k. Let η be the least
element for which c(η) 6= 0 and set y =

∏n
i=1 T

p−1−ηi
i . Then, using 2.1,

T γ⊗sη = c(η)−1yv ∈ N where γ =
∑n

i=1(p−1)εi. Now T γ⊗S(λ) is a u(K0)-
submodule of M(S(λ)); in fact, viewing M(S(λ)) as a graded module in the
obvious way, it is the homogeneous component of least degree. Moreover,
T γ⊗S(λ) is simple so, since it intersects N nontrivially, it must be contained
in N. Hence T γ ⊗m ∈ N for some maximal vector m of S(λ).

For 0 ≤ i ≤ r, r < j ≤ n and 0 ≤ k < p, set

[i, j, k] =
i∑
l=1

(p− 1)εl +
2r∑
l=j

(p− 1)εl + kεn

(empty sums being zero) and note that γ = [r, r + 1, p− 1].
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If T [r,j,p−1]⊗m ∈ N, then T [r,j+1,p−1]⊗m ∈ N (r < j < n). This follows
from 2.12 by using parts (1) and (6) if λj′ /∈ {0,−1}, by using part (4) or
(5) if λj′ ∈ {0,−1} and

∑
i 6=n λiεi /∈ {ζ2r−j+1, ζ2r−j+2}, and by using part

(7) and the assumption that λ is not exceptional otherwise. By induction,
T [r,n,p−1] ⊗m ∈ N.

Next, T [r,n,1] ⊗m ∈ N by 2.14.
Finally, if T [i,n,1] ⊗ m ∈ N, then T [i−1,n,0] ⊗ m ∈ N (0 < i ≤ r) (and

consequently T [i−1,n,1] ⊗m = TnT
[i−1,n,0] ⊗m ∈ N). This follows from part

(7) of 2.13 if
∑

i 6=n λiεi ∈ {ζr−i+1, ζr−i+2}, so suppose otherwise. Assume
λn 6= −i. By 2.4, x(2εn)T [i,n,1]⊗m = −2(λn+ i)T [i,n,0]⊗m, so that T [i,n,0]⊗
m ∈ N. Then, from 2.13 it follows that T [i−1,n,0]⊗m ∈ N by using parts (1)
and (6) if λi /∈ {0,−1} and by using part (4) or (5) otherwise. Now assume
λn = −i. By 2.13, using part (1) if λi 6= −1 and part (4) or (5) otherwise,
one finds that T [i,n,0]−εi ⊗ m ∈ N. Now 2.4 gives x(2εn)T [i,n,1]−εi ⊗ m =
−2T [i,n,0]−εi ⊗m ∈ N so that T [i,n,0]−εi ⊗m ∈ N. As before, 2.13 implies
that T [i−1,n,0] ⊗ m ∈ N, here using part (6) if λi 6= 0 and part (4) or (5)
otherwise.

By induction, 1⊗m = T [0,n,0] ⊗m ∈ N and, since this vector generates
M(S(λ)), it follows that N = M(S(λ)). This completes the proof.
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